Getting Used to Electric Vehicles...
Two Wheels at a Time

Christopher Cherry
Assistant Professor-Civil and Environmental Engineering
University of Tennessee

February 25th, 2010
TSITE Annual Meeting
What is an Electric Vehicle?
Why would you want one?

At 50mph, electricity use is about 235 Wh/mi.

Electricity is Cheap, about 12¢/1000Wh=2.4¢/mi

Gas is not so cheap... at $2.50/gal a 55mpg Prius burns 4.5¢/mi.

But they can be expensive...

Nissan Leaf is trying hard to meet the $20-25k price. Tesla>$100k
Sticker Shock on Unproven Technology=Too Risky

- Incremental approach
 Gas HEV→PHEV→Full Battery EV
What are other ways to get acquainted

Carshare

• Trip-scale car rental
• Pay by the mile
• Cheaper than rental
• Cheaper than (second) car ownership
• Full average cost paid for marginal use
• Car is not parked 95% of the time
• Try that EV without committing
 • what about range/recharge problems?
Which Country has 100+ million EVs on the road now?
• Electric two wheelers are very efficient about 12Wh/mi (vs 120-230Wh/mi for e-car)

• Electric two wheelers are no longer “new”

• Electric two wheelers could help China transition

Yearly E-bike Production in China
Why the success in China

- China’s growth due to bicycle culture (and infrastructure)
- E-bikes are relatively cheap (around $300)
- Trips are short
- Transit is crowded
- Streets are congested
Sample E2W Emissions (gCO$_2$/km)

- Bus$_{50\text{pax}}$~25 g/pax-km
- Motorcycle~55 g/pax-km
- Car$_{1.5\text{pax}}$~120 g/pax-km
Sustainable Urban Mobility Asia (SUMA)

Chris Cherry (UT)
Jonathan Weinert (UC-Davis)
Xinmiao Yang (Tsinghua)
Eric Van Gelder (UC-Davis)

Also See Article in TR Part D

Report Online (adb.org)
Also Online (adb.org)
Article in Prep, Likely to TR Part A

Chris Cherry (UT)
Luke Jones (UT)
Could E-bikes Usher in EV’s in USA?

Barriers to Bicycling
- Range/Fatigue
- Terrain
- Show up to work sweaty
- Transport stuff
- Infrastructure
- Weather

Some E-bike Solutions
- About 20 miles
- Electric Assist
- Need Infrastructure
- Weather gear avail.
- Moderate exercise
Similar to E-Car, E-bikes New and Expensive

- Price range around $700-1500
- What if it doesn’t work for me?
- Can I draw the line between commute and recreation?
- It would be great to try one?
- Very cheap operation
 - electricity ≈ 0.2¢/mile
 - battery depreciation ≈ 3¢/mile
What about sharing electric bikes

Bicycle Sharing Programs Growing Worldwide

115,000 trips/day / 20,600 bikes = 5.6 trips/bike/day

Trip length could be 3-4 miles

5.6 trips/bike/day x 4 miles = 22 miles/bike/day

We run into a range problem, but we have the technology

26 Cities In Process
E-bike Share Proof of Concept on UT Campus

Small Scale Project to Test Technology and Market

- How to recharge batteries?
- Can we exchange batteries?
- How are vehicles secured?
- How much energy is used - f(speed, weight, terrain)?
- Can we tie in solar power (truly zero emission)?
- What are environmental impacts?
- Is there a positive public health impact?
- How will students/faculty/staff use or pay?
- What is the preference relationship with bicycles?
E-bike Share Proof of Concept on UT Campus

Scope:

15-25 bikes (sensored)
 10-15 e-bikes
 5-10 bicycles

1-2 stations (unattended)
 auto-locking rental kiosks
 removable battery vending
 scan card/credit card checkout

Serving

on-campus housing
staff and faculty day trips
campus delivery (library)
E-bike Share Expected Outcome

Technology:
- Re-charging Protocol
- Energy Use per Mile
- Bike Locking
- Solar Recharge

Market:
- Students/faculty/staff Use
- Willingness to Pay
- System Design
- Beyond UT
- Business Plan
Can Shared E-bikes Usher In EV’s?

• E-bikes eliminate a few of the barriers to bicycling
• E-bikes can be shared, because their batteries can be easily removed
• E-bikes can introduce riders to EV technology
• E-bikes are the greenest motorized mode (efficient and light)
• Planning and infrastructure required
Next Steps

- Publish findings
- If barriers can be overcome:
 - Develop operating business model
 - Find funding to capitalize system
 - Expand system on UT campus and beyond
 - Integrate e-bikes into existing bikeshare systems worldwide
Contact:

Christopher Cherry
Assistant Professor
Civil and Environmental Engineering
University of Tennessee-Knoxville
223 Perkins Hall
Knoxville, TN 37996-2010
e-mail: cherry@utk.edu
phone: 865-974-7710
mobile: 865-684-8106
fax: 865-974-2669
http://web.utk.edu/~cherry